Chapter 3 Data

There are many data resources necessary to run the full bifrost capelin assessment. We will split this data chapter into the data needed for maturity parameter estimation and the consumption.

3.1 Maturity data

For the maturity part of bifrost, we need data from the acoustic survey in the Barents sea, processed by StoX. By running the StoX projects, a file called “2_EstimateByPopulation_Category_Reports_Abundance.txt” is produced. At the bottom of this file, you find the following table (example from 2016 survey):

## 
## ______________________________________________________________________________________________________
## Variable: Abundance
## EstLayer: 1
## Stratum: TOTAL
## species: 162035
## ______________________________________________________________________________________________________
##                    age                                          
## LenGrp                      0        1        2        3        4   Number  Biomass   Mean W
##                                                                      (1E3)  (1E3kg)      (g)
## ______________________________________________________________________________________________________
## 7.5-8.0           |    108413  3196550        -        -        -  3304964   5109.9     1.55
## 8.0-8.5           |         -  2217823        -        -        -  2217823   3783.9     1.71
## 8.5-9.0           |         -  2823284        -        -        -  2823284   5647.8     2.00
## 9.0-9.5           |         -  3281410        -        -        -  3281410   8391.2     2.56
## 9.5-10.0          |         -  6291983        -        -        -  6291983  19246.9     3.06
## 10.0-10.5         |         -  3159791        -        -        -  3159791  11534.3     3.65
## 10.5-11.0         |         -  1931237    13811        -        -  1945048   8259.7     4.25
## 11.0-11.5         |         -  2290788        -        -        -  2290788  12006.9     5.24
## 11.5-12.0         |         -  2248815    82271        -        -  2331085  14483.6     6.21
## 12.0-12.5         |         -  4699161   357024        -        -  5056185  36801.5     7.28
## 12.5-13.0         |         -  1340294   268462        -        -  1608756  13458.5     8.37
## 13.0-13.5         |         -   706850   763254        -        -  1470104  14119.9     9.60
## 13.5-14.0         |         -   331121   994703    11299        -  1337122  14680.7    10.98
## 14.0-14.5         |         -    37247  1871252   169922        -  2078422  28255.4    13.59
## 14.5-15.0         |         -    29063  1054995    90411        -  1174470  18218.4    15.51
## 15.0-15.5         |         -    10750  1084263    89633    34848  1219495  21461.7    17.60
## 15.5-16.0         |         -        -   580099   429271        -  1009370  20859.0    20.67
## 16.0-16.5         |         -        -   629549   420717    74734  1125000  25230.4    22.43
## 16.5-17.0         |         -        -   170522   310787     8881   490190  12514.5    25.53
## 17.0-17.5         |         -        -    55086   531150     5792   592027  17443.1    29.46
## 17.5-18.0         |         -        -     4998   155824    30239   191061   6166.7    32.28
## 18.0-18.5         |         -        -        -    96756        -    96756   3606.3    37.27
## 18.5-19.0         |         -        -     9115    44474        -    53589   1960.2    36.58
## 19.0-19.5         |         -        -        -     7286        -     7286    324.9    44.59
## ______________________________________________________________________________________________________
## TSN(1000)         |    108413 34596168  7939404  2357530   154495 45156010        -        -
## TSB(1000 kg)      |     128.6 144667.9 115752.5  59107.0   3909.2        - 323565.2        -
## Mean length (cm)  |      7.50    10.00    14.23    16.19    16.14        -        -        -
## Mean weight (g)   |      1.19     4.18    14.58    25.07    25.30        -        -     7.17
## ______________________________________________________________________________________________________

This is the information we have stored in the example data cap for the years 1972-2019, which you can load by running the following code:

data(cap, package = "bifrost")
head(dplyr::filter(cap, year == 2016), n = 10)
##    length.group     1 2 3 4 5 sum(10e9) biomass(10e3t) meanweight(g) meanlength(cm) year
## 1             1 0.000 0 0 0 0     0.000          0.000           0.0           5.25 2016
## 2             2 0.000 0 0 0 0     0.000          0.000           0.0           5.75 2016
## 3             3 0.000 0 0 0 0     0.000          0.000           0.0           6.25 2016
## 4             4 0.000 0 0 0 0     0.000          0.000           0.0           6.75 2016
## 5             5 0.000 0 0 0 0     0.000          0.000           0.0           7.25 2016
## 6             6 2.753 0 0 0 0     2.753          4.405           1.6           7.75 2016
## 7             7 2.247 0 0 0 0     2.247          3.820           1.7           8.25 2016
## 8             8 3.005 0 0 0 0     3.005          6.010           2.0           8.75 2016
## 9             9 3.501 0 0 0 0     3.501          9.103           2.6           9.25 2016
## 10           10 5.956 0 0 0 0     5.956         17.868           3.0           9.75 2016